

# Hydrogen Purification Technologies Overview

2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting

Minish Shah Clean  $H_2$  Technologies, R&D Tonawanda, NY January 12, 2021



### Overview of H<sub>2</sub> Purification Technologies



### PSA (Pressure swing adsorption)

- Most common method used in H<sub>2</sub> plants
- Suitable for small to very large capacities
- Requires feed at pressure
- Produces H<sub>2</sub> at pressure and impurities are removed at nearambient pressure in tail gas
- H<sub>2</sub> purity of up to 99.9999 vol.% achievable



#### Membranes

- Used in niche  $H_2$  separation applications (e. g. syngas ratio adjustment, recovery from  $H_2$ -rich off gases)
- Economical at lower capacities
- Requires feed at pressure
- Produces H<sub>2</sub> at low pressure and impurities are removed at about feed pressure in the retentate
- Product H<sub>2</sub> compressor may be required
- $H_2$  purity is 95 98% vol. from a single stage



## PSA technology: Layered Bed for H<sub>2</sub> Purification





## PSA Equipment – Supplied as Package Unit



#### Adsorber Vessel and Tail Gas Drum



Prefabricated Valve Skid



Process Control System



Adsorbent Material



### Applications for PSA Hydrogen Recovery



#### **Feed Gas**

#### Feed Gas Sources

#### **Synthesis Gases:**

- Steam Reformer
- Partial Oxidation
- Gasification
- CH<sub>4</sub> pyrolysis

#### **Refinery Off-Gases:**

- Catalytic Reformer
- CCR
- Aromatic Plants
- other H2-rich streams

#### Petrochemical Off-Gases:

- Ethylene Plants
- Methanol Plants
- Ammonia Plants



# **PSA**

### **Tailgas** (Impurities + $H_2$ )

#### **Utilized as Fuel Gas:**

- to fuel gas network
- to reformer furnace

| ressure | 1.1 – 7 bar(a |
|---------|---------------|
| ICSSUIC |               |

# Pure Hydrogen Product

#### Hydrogen Consumers

#### Refinery:

Typical Range

99 - 99.9999 vol. %

H<sub>2</sub> purity

- Hydrocracker
- Hydrodesulfurization

**Ammonia Synthesis** 

**MeOH Synthesis** 

#### **Petrochemical Processes:**

- Olefin & Polyolefin
- Aromatics
- Hydrogen Peroxide

#### Others:

- Iron & Steel Industry
- Float Glass Production
- Food Industry
- Electronic Industry
- H<sub>2</sub> Fuel / Fuel Cells

### Polymeric Membranes in Gas Separation



### Glassy Polymers

Gases dissolve into surface

Diffusion controlled transport

More soluble components permeate quicker (small molecule → high flux)

 $H_2$ , He,  $CO_2$  removal/recovery processes

### Typical Permeation Properties

| slow Glassy-Polymer            |          |          |              |                    |                   | fast             |
|--------------------------------|----------|----------|--------------|--------------------|-------------------|------------------|
| C <sub>6</sub> H <sub>14</sub> | $C_3H_8$ | $C_2H_6$ | $CH_4$ $N_2$ | CO CO <sub>2</sub> | H <sub>2</sub> He | H <sub>2</sub> 0 |



## Membrane Applications for Hydrogen Separation



- Syngas H<sub>2</sub>:CO ratio adjustment by removing some hydrogen
- Hydrogen extraction from NG-H<sub>2</sub> mixture
- Hydrogen recovery from refinery off-gas streams
- Hydrogen recovery from purge streams in different processes
- H<sub>2</sub> rejection from olefin streams



### Considerations for H<sub>2</sub> Purification in Methane Pyrolysis Plants



- Pre-cleanup including separation of solids and liquids from raw H<sub>2</sub> stream
- Feed compression to desired pressure for separation
- Full characterization to define all the components including trace impurities
- Integration of purification technology with CH<sub>4</sub> pyrolysis
- H<sub>2</sub> purification technology selection and optimization will depend on
  - Production capacity
  - Feed pressure and composition
  - Product purity and recovery targets
  - Product and tail gas or retentate pressures
  - Integration with rest of the process (use of tail gas or retentate)



**PSA** 



Membranes



Membrane-PSA Hybrid

Final Solution Could be PSA, Membranes (Single or Multi-Stage) or Membrane-PSA Hybrid



# Thank you for your attention.

Linde Inc.
Minish Shah
Tel +1 716-879-2623
Minish.shah@linde.com
www.linde.com

